Transcriptional Analysis of Temporal Gene Expression in Germinating Clostridium difficile 630 Endospores
نویسندگان
چکیده
Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p≤0.01). A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth.
منابع مشابه
Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism
Classically, dormant endospores are defined by their resistance properties, particularly their resistance to heat. Much of the heat resistance is due to the large amount of dipicolinic acid (DPA) stored within the spore core. During spore germination, DPA is released and allows for rehydration of the otherwise-dehydrated core. In Bacillus subtilis, 7 proteins are encoded by the spoVA operon and...
متن کاملC. difficile 630Δerm Spo0A Regulates Sporulation, but Does Not Contribute to Toxin Production, by Direct High-Affinity Binding to Target DNA
Clostridium difficile is a Gram positive, anaerobic bacterium that can form highly resistant endospores. The bacterium is the causative agent of C. difficile infection (CDI), for which the symptoms can range from a mild diarrhea to potentially fatal pseudomembranous colitis and toxic megacolon. Endospore formation in Firmicutes, including C. difficile, is governed by the key regulator for sporu...
متن کاملMolecular Analysis of Toxigenic Clostridium difficile Isolates from Hospital Environment by PCR Ribotyping Method
Background and Aims: Clostridium difficile is an identified cause of antibiotic-associated diarrhea, antibiotic-associated colitis, pseudomembranous colitis and nosocomial diarrhea. The objective of this survey was to determine molecular analysis of toxigenic Clostridium difficile isolates from hospital environment in Tehran tertiary medical centers. Materials and Methods: In this descriptiv...
متن کاملComparative Transcriptional Analysis of Clinically Relevant Heat Stress Response in Clostridium difficile Strain 630
Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C) in C. difficile strain 630 and identified 341 differentially expressed ...
متن کاملGenome Resequencing of the Virulent and Multidrug-Resistant Reference Strain Clostridium difficile 630
We resequenced the complete genome of the virulent and multidrug-resistant pathogen Clostridium difficile strain 630. A combination of single-molecule real-time and Illumina sequencing technology revealed the presence of an additional rRNA gene cluster, additional tRNAs, and the absence of a transposon in comparison to the published and reannotated genome sequence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013